

Carbohydrate Research 272 (1995) 255-262

Note

Direct transformation of D-idose and D-altrose with potassium cyanate into cyclic carbamates of derived glycosylamines

József Kovács a, *, István Pintér a, Peter Köll b, *

^a Central Research Institute for Chemistry, Hungarian Academy of Sciences, Pusztaszeri út 59–67, P.O. Box 17, H-1525 Budapest, Hungary

b Department of Chemistry, The University, Carl-von-Ossietzky-Str. 9-11, P.O. Box 2503, D-26111 Oldenburg, Germany

Received 20 May 1994; accepted in final form 11 November 1994

Keywords: D-Idose; D-Altrose; Cyclic carbamates; Glycosylamines

The reaction of aldoses with potassium cyanate in water in the presence of weakly acidic buffers (NH₄Cl, NaH₂PO₄) yields 1,2-cis-(cyclic carbamates) [N,O-carbonyl derivatives] of glycosylamines [1,2]. We now report these transformations for D-idose and D-altrose, thus completing our studies in the series of hexoses.

The reaction of D-idose, prepared in situ [3] from 1-deoxy-1-nitro-D-iditol [4], with potassium cyanate (1.5 mol) in the presence of sodium dihydrogen phosphate (2 mol) at 60° C was complete within 2 h (pH $6.5 \rightarrow 7.5$) and gave β -D-idofuranosylamine 1,2-(cyclic carbamate) (1) in 60% yield. No identifiable by-products were observed.

^{*} Corresponding authors.

Treatment of 1 with hot acetic anhydride and sodium acetate gave the N-acetyl-tri-O-acetyl derivative 2. Both 1 and 2 were identified by comparison of their NMR spectra with those of the corresponding L enantiomers [2] obtained as by-product from the analogous reaction of L-gulose.

Unlike D-idose, transformation of D-altrose under the same conditions gave a mixture of three isomeric cyclic carbamates besides unreacted D-altrose, which was present even after prolonged times of reaction. The mixture of products was separated by column chromatography into two fractions: an inseparable mixture (54%) of 1-N,2-O-carbonyl-O-D-altrofuranosylamine (3) and its O-D-pyranoid analogue 6 in the ratio of 7:2 (NMR data), and 1-O-O-carbonyl-O-D-allofuranosylamine (8, 2%) [2].

Although compounds **3** and **6** could not be separated even by HPLC, their structures were elucidated by the 1H and ^{13}C NMR spectra of a solution of the mixture in D_2O (Tables 1 and 2). The assignments of the carbon signals were corroborated by $^1H/^{13}C$ -correlated NMR spectra (2D-COSY) with the exception of the very close signals of C-1 and C-2 (δ 80.61 and 80.54) for **6**. The signal for C-1 in **3** appeared at significantly lower field (δ 87.60, furanoid system) than that for **6** (δ 80.61 or 80.54, pyranoid system), in agreement with the ^{13}C NMR data [5] of aldofuranoses and aldopyranoses and those of the analogous cyclic carbamates [1,2,6]. The β -D-altrofuranose configura-

Table 1 ¹H NMR data ^a for the cyclic carbamates

Compound	Chemica	l shifts (δ)					
	H-1	H-2	H-3	H-4	H-5	H-6a	H-6b
1	5.745	4.883	4.238	3.796	3.832	3.587	3.477
3	5.904	5.056	4.611	4.007	3.594	3.760	3.607
6	5.432	4.676	4.101	3.921	3.75	-3.81	3.686
8	5.742	5.069	4.293	3.830	4.000	3.711	3.632
	Coupling	constants (H	Iz)				
	$J_{1,2}$	$J_{2,3}$	$J_{3,4}$	$J_{4,5}$	$J_{5,6a}$	$J_{5,6\mathrm{b}}$	$J_{6\mathrm{a},6\mathrm{b}}$
1	5.5	0	2.5	7.7	3.2	5.7	-12.1
3	5.7	~ 0	~ 1	8.4	3.0	6.2	-11.85
6	4.9	5.7	3.15	4.35		6.4	-12.1
8	5.4	5.6	9.15	3.35	3.8	7.2	-11.9

^a Recorded at 500 MHz for solutions in D₂O.

Compound	Chemical s	shifts (δ)					
-	C-1	C-2	C-3	C-4	C-5	C-6	NCOO
1	85.97 b	85.86 b	73.10	79.71	70.50	62.82	160.27
3	87.60	87.00	75.15	86.26	71.19	63.02	159.79
6	80.61 ^b	80.54 ^в	68.77	67.75	77.14	62.14	160.79
8	85.64	80.32	70.17	78.20	70.91	62.40	160.64

Table 2 ¹³C NMR data ^a for the cyclic carbamates

tion of 3 was deduced from the very small values of $J_{2,3}$ (~ 0 Hz) and $J_{3,4}$ (~ 1 Hz) indicative of the *trans* dispositions of H-2,3 and H-3,4 as found for analogous systems with the β -L-arabinofuranose and α -D-galactofuranose configurations [1]. On the other hand, medium $^3J_{\rm H,H}$ values for 6 accord with neither the 1C_4 nor the 4C_1 conformation of the pyranoid ring and strongly indicate a conformation near $^{0,3}B$, permitting maximum distances between the substituents. In other related cases [2,6] heavily distorted pyranoid rings were observed.

Treatment of the mixture of 3 and 6 with hot acetic anhydride and sodium acetate furnished the corresponding tetra-N,O-acetyl derivatives 4 and 7, respectively, which could be separated by column chromatography. During the separation the main component 4 was partially N-deacetylated, affording the triacetate 5. NMR spectra of the acetylated derivatives (Tables 3 and 4) corroborated the structures of 3 and 6. In agreement with the furanoid structure of 3 acetylation caused small downfield shifts (0.237 and 0.196 ppm, respectively) of the resonance for H-4, but significant shifts (1.524 and 1.558 ppm, respectively) of the resonances for H-5 in the spectra of 4 and 5. In contrast, the resonance of H-4 was shifted downfield by 1.383 ppm, but that of H-5 underwent only a small shift (0.27 ppm) in the conversion of 6 into 7 in accordance with the pyranoid system (Tables 1 and 3). The $^3J_{\rm H,H}$ coupling constants from the 1H NMR spectrum of 7 (Table 3) suggest either an $^{0.3}B$ or another related, strongly distorted conformation of the pyranoid ring.

In order to establish a rigid conformation of the pyranoid ring, the mixture of 3 and 6 was benzylidenated [7] by treatment with benzaldehyde dimethyl acetal in the presence of catalytic amounts of p-toluenesulfonic acid. The furanoid 5,6-O-benzylidene derivatives 9a and 9b, as main components, were separated by column chromatography from the pyranoid 4,6-O-benzylidene compound 10. All benzylidenated cyclic carbamates were characterised by their 1H and ^{13}C NMR spectra (Tables 3 and 4). However, a decision between the diastereomers of structure 9a,b could not be made. According to the $^3J_{\rm H,H}$ coupling constants the pyranoid compound 10 adopts a regular 4C_1 conformation, due to the fixation by the 4,6-O-benzylidene protecting group.

These results are in accord with our observation [2] that the outcome of the reaction of aldoses with potassium cyanate is controlled by the relative configuration at C-2 and C-4 of the parent sugar. If C-2 and C-4 have the same relative configuration, the reaction affords only one furanose derivative (e.g., 1 from p-idose). This is stereochemically favourable because the oxazolidine ring and the large substituent at C-4 are on

^a Recorded at 125.8 MHz for solutions in D₂O. ^b Assignments may have to be interchanged.

Table 3

H NMR data ^a for the protected cyclic carbamates

Compound		Chemical shifts (8)	8)					
	H-1	Н-2	Н-3	H-4	H-5	H-6a	49-Н	Others
2 b	6.307	4.846	5.420	4.367	5.322	4.374	4.019	2.545 (NAc), 2.160, 2.099, 2.056 (OAc)
4	6.276	4.893	5.432	4.244	5.073	4.419	3.986	2.508 (NAc), 2.115, 2.082, 2.010 (OAc)
o,	5.794	4.956	5.387	4.203	5.107	4.404	4.148	6.888 (NH), 2.101, 2.096, 2.038 (OAc)
7 b	5.910	4.604	5.371	5.304	4.050	4.388	4.174	2.536 (NAc), 2.125, 2.097, 2.092 (OAc)
9a °	5.703	4.796	4.289	3.822	3.954	4.049	3.986	8.814 (NH), 5.758(2) (HO-3, PhCH), 7.38–7.42(3), 7.45–7.48(2) (Ph)
э q 6	5.702	4.807	4.301	3.98-	3.98-4.07	4.202	3.851	8.796 (NH), 5.776 (HO-3), 5.914 (PhCH), 7.37-7.43(4), 7.45-7.49(1) (Ph)
10°	5.230	4.330	4.218	3.730 3.866	3.866	4.192	3.637	8.727 (NH), 5.704 (PhCH), 5.696 (HO-3) 7.34–7.37(3), 7.44–7.47(2) (Ph)
	Coupli	Coupling constants (Hz)	ıts (Hz)					
	$J_{1,2}$	J _{2,3}	J _{3,4}	$J_{4,5}$	J _{5,6a}	J _{5,6b}	$J_{6a,6b}$	J _{3,H0-3}
2 b	5.6	6.0	3.8	8.9	3.8	5.7	-12.2	
ф ф	5.7	0	2.05	6.55	3.8	5.75	-12.2	
S.	5.7	0	1.9	7.3	3.3	5.15	-12.2	
1 b	4.8	6.25	5.9	2.5	3.8	2.85	-12.1	
9 a c	5.5	0	1.5	8.5	6.7	4.4	-8.0	4.5
3 96	5.6	0			5.9	0.9	-8.5	4.4
10 °	3.3	2.5	3.0	9.4	5.5	10.2	-10.3	

 $^{\rm a}$ Recorded at 500 MHz. $^{\rm b}$ For solutions in CDCl $_{\rm 3}$. $^{\rm c}$ For solutions in (CD $_{\rm 3})_{\rm 2}$ SO.

	ves of cyclic carbamates
	protected derivativ
	for the p
4	C NMR data
Table	13C]

				2				
Compound Chemical shi	Chem	ical shift	fts (8)				E	
	C-1 C-2		C-3	C4	C-5	C-6	C-3 C-4 C-5 C-6 NCOO Others	Others
2 b	85.29	85.29 80.13	77.11	74.67	68.99	62.26	151.74	77.11 74.67 68.99 62.26 151.74 170.32, 169.66, 169.45, 169.31 (COO,CON), 23.64 (MeCON), 20.92, 20.57(2) (MeCOO)
4	89.98	83.81	76.23	81.39	70.06	62.25	151.29	62.25 151.29 170.17, 169.79, 169.37, 169.22 (COO,CON), 23.38 (MeCON), 20.51(2), 20.44 (MeCOO)
S, b	87.14	84.30	76.92	82.87	70.05	62.35	156.50	62.35 156.50 170.54, 170.11, 169.37 (COO), 20.58, 20.55(2) (MeCOO)
7 b	79.60	75.07	69.38	68.40	74.51	63.30	63.30 151.99	170.51, 169.39, 169.23, 168.92 (COO,CON), 23.42 (MeCON), 20.59, 20.53(2) (MeCOO)
ა ო 6	89.98	86.68 86.49	75.16	85.73	74.93	99.79	67.66 156.75	136.96, 129.34, 128.15(2), 126.77(2) (Ph), 103.74 (Ph.C.H)
ه ه ،	86.59	85.95	75.36	85.77	75.13	28.79	156.81	67.87 156.81 137.72, 129.16, 128.20(2), 126.43(2) (Ph), 103.21 (PhCH)
, OI	78.90	78.90 78.78		63.14 75.77	59.17	68.00	157.90	68.00 157.90 137.66, 128.73, 127.87(2), 126.29(2) (Ph), 100.72 (PhCH)
^a Recorded at 125.8 MHz. Assignments are tentative only. ^b For solutions in $CDCl_3$. ^c For solutions in $(CD_3)_2$ SO.	at 125.8 ons in Cl ons in (C	MHz. A OCl ₃ . D ₃) ₂ SO	ssignme	ents are t	lentative	only.		

opposite sides of the furanoid ring. On the other hand, opposite relative configurations of C-2 and C-4 in the aldoses involve the formation of a mixture of isomeric cyclic carbamates (e.g., 3, 6, 8 from D-altrose). In these cases the furanoid 1,2-cis-carbamates derived from the parent sugar are sterically more crowded because of steric hindrance of the oxazolidine moiety and the side chain at C-4, thus giving a chance for the formation of other isomers, including even those involving epimerisation at C-2.

1. Experimental

General methods.—TLC was performed on Silica Gel F_{254} (Merck) with A, 7:2:1 EtOAc-EtOH- H_2O ; B, 9:1 CHCl₃-acetone; C, 4:1 CHCl₃-acetone; and D, 1:1 toluene-EtOAc; and detection by charring with H_2SO_4 . Silica gel (230–400 mesh) was used for column chromatography and dry-column flash chromatography [8]. HPLC was carried out with a Knauer 64 apparatus using a column (500×8 mm) of LiChrosorb RP-18, 5 μ m (Merck) and H_2O as eluent. Optical rotations were measured with a Zeiss Polamat A polarimeter at 25°C and IR spectra with a Nicolet 205 FT spectrometer. A Bruker AMXR-500 spectrometer was used to obtain 1H NMR spectra [solutions in D_2O , internal HOD; solutions in CDCl₃ and (CD₃)₂SO, internal Me₄Si] at 500 MHz and ^{13}C NMR spectra [solutions in D_2O , internal acetone; solutions in CDCl₃ and (CD₃)₂SO, internal Me₄Si] at 125.8 MHz.

Aldosylamine 1,2-(cyclic carbamates).—To a solution of the aldose (5 mmol) in water (7 mL) were added potassium cyanate (0.61 g, 7.5 mmol) and NaH₂PO₄ · H₂O (1.38 g, 10 mmol), and the mixture was heated at 60°C until in the TLC no more changes were observed (2 to 6 h, pH 6.5 \rightarrow 7.5). The solution was then concentrated together with silica gel (3 g) and the residue was dried by the evaporation of toluene. Separation of the products was performed by dry-column flash chromatography [8] by repeated elution with solvent A (18 mL) from a short column (70 × 30 mm) and, if necessary, by column chromatography.

Acetylation of the cyclic carbamates.—A mixture of the cyclic carbamate (1 mmol) and anhyd NaOAc (0.25 g, 3 mmol) in Ac_2O (3 mL) was boiled under reflux for 1.5 h, then poured into ice—water and extracted with $CHCl_3$. The extract was dried and concentrated, then the residue was purified by column chromatography (solvent B).

Benzylidenation of the cyclic carbamates [7].—To a solution of the cyclic carbamate (1 mmol) in N,N-dimethylformamide (3 mL) were added benzaldehyde dimethyl acetal (0.25 g, 1.6 mmol) and p-toluenesulfonic acid (2 mg), and the mixture was heated to 55°C on a rotary evaporator in vacuo for 3 h, while the solvent was removed. The residue was treated with aq 3% NaHCO₃ (10 mL) and extracted with CHCl₃ (20 mL). The combined organic phase was washed with aq NaHCO₃, then dried with Na₂SO₄, concentrated, and purified by column chromatography.

 β -D-Idofuranosylamine 1,2-(cyclic carbamate) (1, 1-N,2-O-carbonyl- β -D-idofuranosylamine).—An aqueous solution (18 mL) of D-idose freshly prepared [3] from 1-deoxy-1-nitro-D-iditol semihydrate [4] (2.7 g, 12.3 mmol) was treated with potassium cyanate according to the general procedure for 2 h. TLC (solvent A) then showed one main product (R_f 0.55) but no starting sugar. Work-up with dry-column flash chromatography (solvent A) afforded first a negligible multicomponent mixture (51 mg, R_f 0.65

-0.75), then 1 (1.50 g, 60%) as a syrup; R_f 0.55 (solvent A); $[\alpha]_D + 12^\circ$ (c 2.6, H₂O); $\nu_{\text{max}}^{\text{MeOH}}$ 1760 cm⁻¹ (C = O). Anal. Calcd for C₇H₁₁NO₆: C, 40.98; H, 5.40; N, 6.83. Found: C, 40.83; H, 5.72; N, 6.85.

The tetra-acetyl derivative (2, 67%) of 1 was a syrup; R_f 0.35 (solvent B); $[\alpha]_D$ -41° (c 3.4, CHCl₃) {lit.[2] for the L enantiomer: $[\alpha]_D$ +45° (c 1, CHCl₃)}. Anal. Calcd for $C_{15}H_{19}NO_{10}$: C, 48.26; H, 5.13; N, 3.75. Found: C, 48.17; H, 5.10; N, 3.61.

Reaction of D-altrose with potassium cyanate.—Reaction of D-altrose (0.90 g, 5 mmol) for 6.5 h by the general procedure gave (TLC) a complex mixture that contained products with R_f 0.65 and 0.4 together with D-altrose, R_f 0.3 (solvent A). Column chromatography (solvent A) gave, first, an inseparable mixture (554 mg, 54%) of 1-N,2-O-carbonyl- β -D-altrofuranosylamine (3) and 1-N,2-O-carbonyl- β -D-altropyranosylamine (6) in the ratio 7:2 (NMR); R_f 0.65 (solvent A); $[\alpha]_D - 10^\circ$ (c 2, H₂O); $\nu_{\rm max}^{\rm MCOH}$ 1763 cm⁻¹ (C = O). Attempts to separate 3 and 6 by HPLC failed.

Eluted second was 1-N,2-O-carbonyl- α -D-allofuranosylamine (8; 20 mg, 2%); syrup; R_f 0.4 (solvent A); $[\alpha]_D$ +61° (c 1.2, H_2O), identical (NMR) with an authentic sample {lit. [2] $[\alpha]_D$ +62° (c 1.9, H_2O)}.

Eluted third was D-altrose (198 mg, 22%); R_f 0.3 (solvent A); identified by ¹³C NMR spectroscopy [5].

Acetylation of the first fraction (3 + 6) furnished (TLC) a mixture of the corresponding tetra-acetyl derivatives 4 and 7, R_f 0.35 and 0.4, respectively (solvent B). Column chromatography (solvent B) gave, first, 7 (13%); syrup; R_f 0.4; $[\alpha]_D$ -52° (c 1.8, CHCl₃); $\nu_{\rm max}^{\rm CHCl_3}$ 1803 (carbamate C = O), 1750 (OAc), 1720 cm⁻¹ (NAc). Anal. Calcd for C₁₅H₁₉NO₁₀: C, 48.26; H, 5.13; N, 3.75. Found: C, 48.60; H, 5.54; N, 3.71.

Eluted second was 4 (29%); syrup; R_f 0.35; [α]_D -73° (c 1.3, CHCl₃); $\nu_{\text{max}}^{\text{CHCl}_3}$ 1804 (carbamate C = O), 1751 (OAc), 1720 cm⁻¹ (NAc). Anal. Found: C, 48.42; H, 5.39; N, 3.58.

Eluted third (solvent *C*) was the triacetate **5** (34%); R_f 0.25 (solvent *C*); mp 109°C (from EtOH); $[\alpha]_D$ -37° (*c* 2, CHCl₃); ν_{max}^{KBr} 1803 (carbamate C = O), 1750, 1738 cm⁻¹ (OAc). Anal. Calcd for $C_{13}H_{17}NO_9$: C, 47.13; H, 5.17; N, 4.23. Found: C, 46.82; H, 5.18; N, 4.25.

Reacetylation of 5 gave 4 (89%); syrup; R_f 0.35 (solvent B), identical with the product described above.

Benzylidenation of the mixture of **3** and **6** afforded (TLC) a mixture of the corresponding acetals **9** (R_f 0.10–0.15, 2 spots) and **10** (R_f 0.35), respectively (solvent D). Column chromatography (solvent D) gave, first, 4,6-O-benzylidene- β -D-altropyranosylamine 1,2-(cyclic carbamate) (**10**, 17%); R_f 0.35; mp 187°C (from CHCl₃); [α]_D -37° (c 1.4, EtOAc); $\nu_{\rm max}^{\rm KBr}$ 1778 cm $^{-1}$ (c = 0). Anal. Calcd for c₁₄ c₁₅ c₁₆ c₁₇ c₁₈ c₁₈ c₁₉ c

Eluted second was a chromatographically pure 5,6-O-benzylidene- β -D-altrofurano-sylamine 1,2-(cyclic carbamate) (9a, 12%); R_f 0.15 (solvent D), mp 102–103°C (from CHCl₃-hexane); $[\alpha]_D$ -48° (c 1.1, EtOAc); ν_{max}^{KBr} 1753, 1739 cm⁻¹(C = O). Anal. Found: C, 57.62; C, 53; C, 4.59.

Eluted third was a mixture of diastereomers **9a** and **9b** (27%); syrup; R_f 0.10-0.15 (solvent D).

Acknowledgments

This work was supported by the National Fund for Scientific Research (OTKA 1758). We thank Mrs A. Bede for technical assistance, Mrs M. Rundshagen and Mr D. Neemeyer for performing the NMR spectra, and Dr M. Bischoff for HPLC experiments.

References

- [1] J. Kovács, I. Pintér, U. Lendering, and P. Köll, Carbohydr. Res., 210 (1991) 155-166.
- [2] J. Kovács, I. Pintér, D. Abeln, J. Kopf, and P. Köll, Carbohydr. Res., 257 (1994) 97-106.
- [3] M. Dromowicz, Diplomarbeit, Universität Oldenburg, 1991; J.C. Sowden, Adv. Carbohydr. Chem. Biochem., 6 (1951) 291-318; H.H. Baer, Adv. Carbohydr. Chem. Biochem., 24 (1969) 67-138.
- [4] P. Köll, C. Stenns, W. Seelhorst, and H. Brandenburg, Liebigs Ann. Chem., (1991) 201-206.
- [5] K. Bock and C. Pedersen, Adv. Carbohydr. Chem. Biochem., 41 (1983) 27-66.
- [6] J. Kovács, I. Pintér, G. Tóth, Z. Györgydeák, and P. Köll, Carbohydr. Res., 239 (1993) 95-106.
- [7] M.E. Evans, Carbohydr. Res., 21 (1972) 473-475.
- [8] L.M. Harwood, Aldrichimica Acta, 18 (1985) 25.